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Teaching Moment - What is a Unikernel?

 To answer that question, we have to take a look at the 

structure of a modern operating system

  Doesn’t matter if it’s Microsoft Windows, Linux, UNIX, Mac OS X 

 OS X  macOS, etc.

 All the mainstream operating systems have the same 
fundamental anatomy



The Anatomy of an Operating System

 Runs in Special 
Hardware Mode
  – “Ring 0”

 Only Program That Can 
Access or Allocate 
Resources 

 Copies Data Between 
Programs

“The Kernel”

“Userland”
 Where Applications 

Run

 No Privileges

 Can Not Access 
Resources

  
 Can Not “Talk” to Other 

Programs



Growth of Operating Systems 
 Linux Kernel is now 28 million lines of source code!
 Windows is estimated at 50 million lines of code!!
 With an industry average of 15-50 defects per 1000 lines of 

code*:

   Linux (Just the kernel) = 420 thousand to 1.4 million defects

 Windows = 750 thousand to 2.5 million defects

 * Steve McConnel, “Code Complete 2”, 2005   



It Gets Worse
 The “Userland” support software is often 10 to 20 times larger than 

the kernel
 Red Hat Enterprise Linux (RHEL) Userland is approximately 420 

million lines of code

 Try not to think about the 6.7 to 22 million defects running on the 
SCADA server controlling your power grid and drinking water



Can It Get Even Worse?
 The Linux kernel is full of junk!

 A large number of device drivers are routinely compiled into the kernel, 
regardless of the actual hardware in the computer

 There are device drivers for hardware that no longer exists
 Silicon Graphics video drivers were just added to the Linux 5.5 

kernel! 

 Amazon AMI images have had drivers for floppy disks and audio cards!
 In 2015, the Venom vulnerability (CVE-2015-3456) used a flaw in the 

floppy disk controller (FDC) driver to compromise both physical and 
virtual machines



And It Doesn’t End There
 Likewise, there are thousands of storage and communications 

protocols in the kernel that will not be used in your application

 Linux recognizes 7 different executable formats, even though the vast 
majority of applications (including Spire) are in ELF format

 Each of these extra, unused chunks of code (with its 15-50 
defects/1000 SLOC) is a potential entry point for compromise



What If We Cut Out the Parts We Don’t Need?

 Code traces show that the average application uses less than 0.08% of 
the total code in the kernel

 Take the standard C library as an example
 The C library contains thousands of functions, but a modern linker 

only includes the actual functions (and code) that an application 
uses

 Could we do the same with our operating system?



We Can Create A Library of Operating System 
Functions

 Common operating system functions, drivers, and protocols are 
written as a library of functions

 When you link these “library operating system” functions to your 
application, you have a single executable that runs directly on 
hardware or a hypervisor as a stand-alone virtual machine (VM)…
 Only the functions, drivers, and protocols actually used in the 

application are linked into the executable/VM

…You have a Unikernel! 



So What Does a Unikernel Look Like?

Unikernel
Compiler

OS Functions

“Ring 0”

“Ring 3”

“Ring 0”



Unikernel Approaches
 “From the Ground Up” - Programmer writes code specifically for the 

Unikernel library functions

 Mirage

 “Partition an Existing Kernel” - Extract all the functions of an existing 
kernel and include only needed functions during compile

 Rump kernel

 “POSIX/Linux Interface to New Library Functions” - New, modernized 
functions are written for the library, but clients call the functions 
through existing interfaces

 IncludeOS 



The Paper’s Focus
 Mirage

 A set of libraries that perform the functions commonly associated 
with the operating system for memory management, execution, 
and communications

 Written in a strongly typed functional language, OCaml
 OCaml applications linked with the Mirage libraries form virtual 

machine images (unikernels) designed to be run on the Xen 
hypervisor

 Mirage unikernels use Xen for device drivers and scheduling



The Paper - Why Unikernels?
 Enhanced Security

 Hardware-Enforced Access Controls

 Less Code

 Immutable

 No System Calls

 Per-Compile Randomization
 Single Address Space

 No Expensive Context Switches

 Zero Copy
 Small Executable Size
 Reduced Runtime Complexity (No Scheduler)



Architecture of a Unikernel (1/3)
 Configuration and Deployment

 Instead of /etc and config files, the application configuration is defined at 
compile time and compiled directly into the executable code.

 Configurations are explicit and manipulated directly by the high level 
language making them subject to type checking and static anaysis

 Reduced effort to configure multi-service applications 

 Compactness and Optimization

 Using only the required functions makes for compact code

 Since the compiler sees all the code, it can apply optimizations to the entire 
unikernel



Architecture of a Unikernel (2/3)
 Threat Model

 Tenants in a shared cloud environment (possibly Spire data center controllers)

 Across the network (definitely Spire)

 Hypervisor provides isolation and access control

 Compile time specialization (no system calls, no scheduler, etc.)

 Single Image

 Removal of all unused functions and code

 Pervasive Type Safety

 Mirage uses a single, strongly typed language



Architecture of a Unikernel (3/3)
 Sealing and Privilege Dropping

 Mark code as immutable, enforced by hypervisor

 Code pages are marked “read-only”
 Data pages (stack, heap, mmap, etc.) are marked “non-executable”

 Harvard architecture instead of Von Neumann architecture

 Compile-Time Address Space Randomization

 Mirage unikernel toolchain can produce randomized internal addresses 
(equivalent to ASLR)



Components of the Mirage Unikernel (1/4)
 OCaml

 The majority of the operating system functions are written from scratch in OCaml, a 
strongly typed functional language

 The authors attribute much of Mirage’s reliability to the use of OCaml

 PVBoot Library

 Minimal code required to:
 Create a single 64 bit address space
 Load unikernel image
 Allocate required memory to unikernel data structures
 Use 1 vCPU
 Connect to Xen event channels

 Compiled directly into the unikernel image



Components of the Mirage Unikernel (2/4)
 Language Runtime

 Mirage uses a specialized OCaml runtime library
 Modified for single address space layout
 Memory mapped I/O between Mirage unikernel VMs on the same Xen hypervisor

 PVBoot provides a single event-driven execution loop

 Thread concurrency comes from a Lightweight Thread Library written in OCaml

 Device Drivers
 Mirage uses Xen device drivers

 Xen device drivers communicate with VMs using a single shared memory page of 
“slots” arranged in a ring buffer, with event channels for signaling

 Mirage wraps this Xen ring I/O within OCaml functions for type safety enforcement



Components of the Mirage Unikernel (3/4)

 Zero-Copy Device I/O
 With a single address space, no need to copy data from kernel 

space to user space

 Type-Safety Protocol I/O
 All I/O is wrapped in OCaml for type safety, eliminating buffer 

overflow errors/attacks



Components of the Mirage Unikernel (4/4)

 Network Processing
 Fast shared memory between unikernels in the same hypervisor

 “Scatter/Gather” approach to build and send Ethernet TCP/IP I/O

 Storage
 Uses “shared page” I/O ring buffer with Xen hypervisor for block 

storage

 OCaml library in unikernel provides filesystem abstraction over the 
blocks



Evaluation (1/3)
 Microbenchmarks

 Boot Time
 Mirage boots in 50 milliseconds, versus 500 milliseconds for an equivalent Linux VM

 Threading
 Mirage can launch 20 million threads per second, versus 4 seconds for an 

equivalent Linux VM

 Networking and Storage
 Mirage was 4-10% slower than Linux VM when processing ICMP Ping requests
 Mirage was slightly faster than Linux on IPv4 reads (zero-copy) and slightly slower 

on writes because of CPU operations in protocol libraries
 Mirage and Linux direct I/O storage throughput effectively the same (1.6 GB/sec)



Evaluation (2/3)
 DNS Server Appliance (Unikernel image – 183.5 kB versus Linux image - 

462MB)
 BIND9 – 55K queries per second
 NSD – 70K queries per second
 Mirage DNS appliance – 75-80K queries per second 

 OpenFlow Controller Appliance

Program Batch Single 
Request

Maestro 20K 10K

NOX 120K 40K

Mirage 
Appliance

100K 35K



Evaluation (3/3)
 Dynamic Web Server Appliance

 Twitter application
 Mirage appliance – 800 sessions per second

 Linux – 200 sessions per second

 Static web server
 Mirage appliance ~ 2000 connections per second

 Apache2 ~ 1700 connections per second

 Code and Binary Size

 Mirage unikernels are 4-5 X fewer SLOC than an equivalent Linux 
appliance (after maximum stripping of Linux)



Paper Conclusions
 Demonstrated that the unikernel approach significantly 

improves safety and efficiency for cloud appliances
 Contributed a “clean slate” library OS based on the strong 

typed OCaml functional language
 Performance equal to, and in some cases better than, 

conventional operating system-hosted applications
 By relaxing (abandoning) backwards compatibility, safety 

and efficiency can be improved   



Differences Between Mirage and Our Spire Project

 Mirage Assumes New Code Development - “From the Ground 
Up”

 We Will Be Using a Unikernel Library Designed to Support 
Existing POSIX/Linux Software

 While Mirage Can Randomize Internal Addresses, Most 
Unikernel Libraries Can Not

 Combine Unikernel Approach With MultiCompiler Approach
 “Do Nothing ;-)” 



What Do We Need for Spire?
 Run a single application per server (no scheduler required)

 Run as a single user

 Uses a known set of hardware drivers

 Uses 1 or 2 communications protocols

 Needs security (from unauthorized access - “hacking”)

 Needs reliability
 Nice to-have: Speed (low startup and processing latency)



Keeping Only The OS Functions That Spire Requires
 What does that buy us?

 Let’s start with security:
 Greatly reduced attack surface (99.92% reduction)

 We don’t need any userland applications (bye-bye 410 million lines of potentially 
flawed code!)
 No shell (/bin/sh)

 No ability to run malicious or hacking tools on the same VM

 Function calls instead of system calls (more secure)
 No time consuming context switches

 Static linking with prevent injection attacks

 No re-configuration attacks



How To Include Only Required Code?

 The C Library Analogy Is The Key
 The C Library Is Actually A “Middle Ware Layer”

 It Converts Standard C Function Calls Into Equivalent Kernel 
System Calls

 Instead of Handing the Function Call Off as a System Call, What If 
We Extended the C Library to Include the Appropriate Kernel 
Code?

 Instead of the C Library Passing a “Print()” Call To The Kernel, the 
Library Can Include the Machine Instructions to Do The Actual I/O



Increased Performance
 Smaller, Less Memory Intensive Images Mean More Virtual Machines Per 

Hardware Server
 5 Megabyte Virtual Machines = 10,000 VMs Per Physical Server

 Smaller Than Most Docker Containers

 6 Millisecond Boot Times
 Jitsu – Boot-On-Demand

 45 Microsecond Throughput Times
 No Context Switches

 No Information Copying

 Single Address Space
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